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In this note it is indicated that the problem of best approximation with respect to
the supremum (L (0) norm may be solvable by iterative Hilbert space techniques.
The validity of this approach for L P, p (even) < 00, has been established by L. A.
Karlovitz (J. Approx. Theory 3 (1970), 123-127). In the Haar case (L x norm) this
approach yields a convergent algorithm which is a slight modification of the Remez
algorithm. t 1984 Academic Press. Inc.

1. INTRODUCTION AND PRELIMINARIES

Consider the problem of approximating an element x in a Banach space X,
with norm II II, by an element in a finite dimensional subspace V. In fact
consider XC U(Q), 1~p ~ 00, where L 00 = C (the continuous functions)
and Q is compact. Here Ilxll = IlxilLP = (5Q Ixl PdQ)I/P, where dQ denotes
integration with respect to a nonnegative measure on Q which is compatible
with the L oo norm, i.e., IlxlILP~ IlxllLoo , VxE CCQ). (An arbitrary X can be
identified with a subspace of CCQ), where Q is the set of extreme points of
the ball of the dual.)

We first make some well-known observations about the best approx­
imation operator BP in this setting. For all 1 ~ p ~ 00, insight into B p: X ~ V
is gained by considering BP as a "perturbation" of B 2' the completely
understood Hilbert space setting. In fact, for 1 <P < 00, x - B pX is
completely characterized by being p-orthogonal to V, i.e.,

f Ix-BpxIP-l sgn(x-Bpx)vdQ=O,
Q

VvE V. (1)

Note that (1) can be rewritten by use of the duality operator Jp (Jpx =
Ix IP - I sgn x is the (unnormalized) extremal function in L q for x E L P), where

<x, y) = 5Q xy dQ:

<Jp(x -Bpx), v) = 0,
173

VvE V. (2)

0021-9045/84 $3.00
Copyright © 1984 by Academic Press, Inc.

All rights of reproduction in any form reserved.



174 BANI AND CHALMERS

A complete characterization for Boox (in general, set-valued) is obtained
from (1) by taking a limit as p --t oc> (see Theorem 1 of Sect. 2) to obtain the
well known "0 in the convex hull"-criterion for best approximation:

I Aa sgn[(x - Boox)(U] v(ta) = 0,
t"Elf'

VvE v, (3)

where Aa~O, LAa=I, and '&'={tEQ:I(x-Boox)(t)I=llx-BooxIILx },

the so-called critical set of the error.

Note 1. By the Caratheodory theorem (see [4, p. 17]), for'&' as in (3)
we can take a minimal'&'* = '&' n {ta ; Aa *O} to have no more than n + 1
points.

Note 2. Given any set '&', the possible dependencies

(3 ')

of point evaluations et (et(x) = x(t)) which vanish on V are determined
linear-algebraically. Th~s given a set '&'* (see Note 1), the Ya are unique (up
to a sign (a)): If also Lt"Elf'*y~et,,=O, then L[Aasgn[(x-Boox)(ta)]­
AY~] et = 0, where IAI~1 = max ly~I/Aa' and this contradicts the minimality
of '&'* ."Therefore Aa = IYa I and a sgn Ya = sgn[ (x - Boox)(ta)] are algebraic
consequences and hence independent of x and Boo x.

Furthermore we can let p --t 1 in (1) to get criteria for B I X (provided
x - B I X does not vanish on more than a set of measure 0). In particular if
[x, V] is an (n + I)-dimensional Haar space (see Sect. 2 for definition) on
Q = [a, b], (1) yields immediately the existence of the Hobby-Rice points
[5] {t;}7=1 (independent of x) such that (to = a, tn+ 1 =b):

VvE V, (4 )

and B I X is the unique element of V interpolating x at {til 7= 1 •

For 1 <p < oc> an iterative algorithm for finding B pX arises from
considering (1) at each stage of the algorithm as a statement about weighted
Hilbert space. That is, note that (1) can be written fQ(x - Bpx) vw dQ = 0,
Vv E V, where w = Ix - B pX IP - 2. Then, given an estimate vv for BpX, let w=
Ix - vvl p- 2 and generate vv+ I by solving fQ(x - vv+ 1) VW dQ = 0, "Iv E V, by
the usual Gram-Schmidt process for finding best (weighted) Hilbert space
approximations. Karlovitz [6] formulated and investigated this algorithm for
oc> >P~ 2 (actually only p even) and showed that it converges provided
vv+ I is mollified appropriately, i.e., at each stage vv+ I is replaced by
AvV

V
+1 + (1-Av)Vv for some (easily determined) AI" In fact AI' yields the
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infimum of the one parameter convex functional d(A) = 1/ x - [Au p+ I +
(1 -A) vp]ll.

In [1] Bani extends Karlovitz' result to all real p ~ 2 and, if [x, V] is an
extended Chebyshev system (see, e.g., [1] for definition), to all 1 <p < 2.
Moreover, in the case [x, V] is extended Chebyshev on [a, b], by letting
p ---> 1 an algorithm is established for finding the Hobby-Rice points.

In the present note the authors obtain the "0 in the convex hull" -criterion
(3) for best L 00 approximation as a weak* limit as p ---> 00 of criterion (1) for
best U -approximation. This suggests that the Karlovitz algorithm itself has
a limiting interpretation for the case p = 00. Indeed for p = 00 and V Haar,
(3) gives rise to the well-known Remez algorithm which we will show can be
viewed as a limit of the Karlovitz algorithm. In fact since the Karlovitz
algorithm is an iterative (weighted) Hilbert space algorithm, we will
demonstrate that the interpolation performed to find the best approximation
on n + 1 points at each stage of the Remez (single or multiple) exchange
algorithm can be replaced by the standard Hilbert space technique for
finding a best (weighted) L 2-approximation on 11 + 1 points. Finally, because
of the aforementioned results and since for 2 :( p < 00 no Haar assumption
is necessary for the convergence of the Karlovitz algorithm, it is expected
that also for p = 00 with no Haar assumption, a Remez exchange-type
algorithm can be developed where the interpolation step is replaced by a
(weighted) Hilbert space procedure. Analogously it is also expected that this
(weighted) Hilbert space approach can be applied to constrained approx­
imation in L OCJ in the absence of Haar conditions just as it has been shown to
apply in U, p < 00 [3]. The application of this technique in the absence of
Haar conditions in L OCJ will be the subject of future investigations.

2. MAIN RESULTS

Let B denote the general best approximation operator. Duality theory
provides the existence of an important (Hahn-Banach) separating functional
x* in the dual X* of X such that

(i) x*(v) = 0, "Iv E V,

(ii) Ilx*llx' = 1,

(iii) x*(x) = Ilx - Bxll.

LEMMA 1. If X = U(Q), 1 <p < 00, then x* = x: =

* .)=f Ix-BpxIP-1 sgn(x-Bpx) (·)dQ
xp ( Q Ilx _ Bpxllfp I .

(5)
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Proof. This follows immediately via an easy calculation from (1) and the
fact that (U)* = U, where l/q + lip = 1. I

Note 3. In formula (5) and in (6) below we will identify x; with its
Riesz representation in L q and C*, respectively.

Knowing just the general form of x * is often sufficient to motivate the
formulation of and to guide the proof of a convergent algorithm providing
Bx.

LEMMA 2. If X = C(Q), then x* = x~ =

x~(-)= L Ansgn[(x-Beox)(tn)](·)(ta ),
f

q
E9f'

(6)

where An? 0, I: An = I, and ~ is as in (3).

Proof. . This follows immediately from (3). I

Observe that formally (6) is a limit of (5) as p -+ 00. That is, suppose
BpX -+ BeoX (certainly this holds for some subsequence and some one of
Boox (recall B eo is in general set-valued». Then (lx-Bpxllllx-BpxIILPy-l
tends to °ofT ~ and our heuristic conclusion holds. We make this statement
rigorous in Theorem I below. First recall

LEMMA 3 (Alaoglu's theorem). A bounded sphere S* of X* is compact
in the weak* topology.

THEOREM 1. Every subsequence of x; has in turn a subsequence
converging weak* to an x~ in C(Q)*.

Proof. From Lemma 1 and Note 3, for 1 < p < 00, x; =
Ix-Bpx!P-l sgn(x-Bpx)/llx-BpxIIGI is unique since Bpx is unique and
by the well-known Polya result (see [4, p.42; and 7, p. 8]) every subse­
quence of Bpx has a subsequence Bpkx converging uniformly to some Beox.
Now assume without loss that fQ dQ = 1; then Ilx; lie. = Ilx; IILI ~ Ilx; Ib = 1
and thus by Lemma 3, X;k has a subsequence which we will again refer to by
x~ which converges weak* to some z* E C(Q)*. We must check that z*
satisfies properties (i-iii) for a separating functional for x. First x;(v) = 0,
Vv E V, shows that z*(v) = 0, Vv E V. Next we show that Ilz*lle' = 1. To
see this, note that Yp= x - Bpx/ll x - BpX IILP is the extremal for x; (i.e.,
IIYpIl LP = 1 and x;(Yp) = 1 =llx;IILq). Further YPk-+Yeo=x-Beox!
Ilx-BO)xlluD uniformly in Leo. We claim that Yeo is an extremal for z*.
Note that l=IIYlluD?IIYIILP implies that x:(y)~1. Hence x:.cy)-+
z*(y) ~ 1 and so IIz* lie- ~ 1. On the other hand given 8> 0, there exists ko
such that k> ko implies z*(yO»? x;:(Yeo) - e; but further there is an [0

such that [>10 implies IIYp/-Yoollv",<e and thus \X;k(YOO)-X:k(Yp)l~
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(7)

Ilx:JIHk II Yoo - Yp/IILPk <II Yoo - Yp/IILOO < 1:. We have therefore that z*(yoo);;~

x:/Yp) - 21: for all k> ko and I> 10 ; in particular, z*(yoo) >x:/Yp) - 21:
for k> max(ko, 10 ), That is, z*(yoo ) >1 - 21: and we conclude that
II z* lie = 1. Finally, z*(x) = limk~oo xp*/x) = limk~oc II x - Bpkx Iluk =
Ilx-BooxII IX' Hence we can write z* =x~. I

COROLLARY 1. If x~ is unique then x; converges weak* to x~.

EXAMPLE. If V is Haar (see below for definition) and x -Boox has
exactly n + 1 critical points (which always occurs if, e.g., [x, V] is Haar),
then x';:' is unique.

DEFINITION. V is said to be Haar on Q iff no nonzero member of v of V
has more than n - 1 zeros. Equivalently, V is Haar iff any n point evaluation
functionals {e t f7-1 in CCQ)* are independent over V., -

Note 4. It is well known that if V is Haar then B oc x is unique.

Motivation. Theorem 1, Corollary 1, and Lemmas 1 and 2 assert that (at
least some subsequence of) Ix-BpxIP-I sgn(x-Bpx)/llx-Bpxll~;1

converges weak * in CCQ) * to the distribution function
Lt EwAasgn[(x-Boox)(ta)]o(, where as usual o( (t)= 1 ift=ta and =0,
oth~rwise. Now we obse;ve that (x-B~x)(ta)=I(x-Boox)(ta)1
sgn[(x - Boox)(ta)] = Ilx - Booxll oo sgn[(x - Boox)(ta)]. We can therefore
write that (x - Bpx) wp converges weak * in CCQ)* to (x - B ocx) w:x:" where

Ix - B x1P- 2

W = p

P Ilx-Bpxll~;1

and

(8)

wl1ere A~=Aa/llx-Booxlloo' We are therefore motivated to make the
following important reformulation of the "0 in the convex hull"-criterion for
best uniform approximation.

THEOREM 2. The best L oo-approximation Boox is also a best weighted
L 2-approximation with weight Woo = Lt EWAaOt , where Aa and ~ are as in
(3). " "

Conversely, given any set ~ = {tal such that the dependence (3') is
unique, then a best woo-weighted L 2-approximation, where Woo = Lt EWAaOt
(A a = IYa I in (3')), is also a best L 00 -approximation on ~. a a



178 BANI AND CHALMERS

Proof By the "0 in the convex hull"-criterion (3), Vo= Boox being a best
L oo-approximation to x implies that Vo is a best L oo-approximation on qj'
which is equivalent to

.L Aa sgn[(x- VO)(ta)] v(ta) = 0,
I"E'if'

VvE V (9)

~ L Aa Ix - Vol(ta) sgn[ (x - VO)(ta)] v(ta) = 0
taEW

Vv E V (10)

(since Ix - vol(ta) = Ilx - volb,,('if') Vta E qj'),

<:> L Aa(x - VO)(ta) v(ta) = 0
I"E'if'

VvE V,

VvE V,

<:> Vo is a best woo-weighted L 2-approximation to x,

according to (1) applied to the support of woo'
For the converse, reverse the logic above by observing that in (10) all

Ix - vol(ta) must be constant (Va) since the dependence LI"E'if'Yae,,, = 0 on
V is unique with IYal=Aa, LAa = 1. Thus divide (10) by the constant
Ix - vol(ta) = Ilx - vollu<J('if') to obtain (9). I

COROLLARY 2. If V is Haar and the critical set qj' is given, then Boox
can be determined by the usual Hilbert space Gram-Schmidt process.

Proof Since V is Haar, by (3) and Note 1 we may take qj'* = qj' n
{ta; Aa "* 0 in (3)1 to have exactly n + 1 points and (see Note 2) the Aa are
determined linear-algebraically (in fact, by inverting an (n + 1) X (n + 1)­
matrix). Hence Woo is a positive weight on qj' which distinguishes among
independent members of V and the Gram-Schmidt process produces an
orthonormal basis VI'"'' vn for V (i.e., (Vi' vj)w

w
= f vivjw oo = Oij' 1 ~ i,

j ~ n). Then Boox is given uniquely by Boox = L7-I(x, vi)w Vi' I- oc

Notation. As in the above proof let (x, y)w = f xyw and let IlxlIL;, =
(x, x)w'

Motivated by the preceding, we now state an iterative Hilbert space
algorithm for finding a best L 00 -approximation and show that it works (in
fact omitting (the "mollifier") step (b)) in the case V is Haar.

ALGORITHM (*}-Weighted L 2-algorithm for best L oo-approximation.

(a) Given V v and wv' determine V v + I so that

Ilx - vv+ I IlL' w ~ Ilx - vllu w
• l' • I'
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and the A~ are determined algebraically via Note 2. ~,+ I = lt~+ 11
is a set obtained from '6'" with no more than n + I points
containing a global maximum and as many other local maxima of
Ix - v1'1 as possible so that the "sign pattern" in dependence (3) is
preserved.

(b) Replace vl'+ 1 by AI,VI'+ 1 + (1 - AJ vI" where AI' yields the infimum
of the convex functional d(A) = Ilx - [AVv+ 1 + (1 - A) VI' II·

(c) Iterate.

ALGORITHM (**). Same as Algorithm (*) except that step (a) is
modified so that ~,+ 1 is obtained from ~, by replacing one point of~, with
a global maximum point of Ix - VI'I so that the "sign pattern" in dependence
(3) is preserved.

THEOREM 3. If V is Haar then Algorithms (*) and (**) converge to the
best approximation (without step (b», provided '6'1 = 1t! 17=0 is any set where
v I does not interpolate x.

Proof By use of Theorem 2 we recognize that Algorithms (*) and (* *)
are the familiar Remez multiple point exchange algorithm (see [7, p. 176])
and single point exchange algorithm (see [2, p. 111; 4, p.96; 7, p. 173 D,
respectively, where the (de la Vallee Poisson) interpolation on n + 1 points
at each stage has been replaced by the standard Hilbert space technique for
the best weighted L 2-approximation on the n + 1 points outlined in the proof
of Corollary 2. I

Note 5. The linear-algebraic procedure for determining which point in
'iif;, is to be replaced in step (a) of Algorithm (* *) in the case V is Haar is
called the single point exchange procedure and is described in [2, p. 109].
The corresponding procedure for Algorithm (*) can be viewed as successive
single point exchanges.

Note 6. The fact that step (b) is not needed in Theorem 3 indicates that
the analogous step may be superfluous in the Karlovitz algorithm for p < 00.
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